
Structure of backbone perimeters of percolation clusters

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys. A: Math. Gen. 22 433

(http://iopscience.iop.org/0305-4470/22/4/012)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 13:51

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/22/4
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 22 (1989) 433-440. Printed in the UK 

Structure of backbone perimeters of percolation clusters 

S S Manna 
Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia 

Received 10 June 1988 

Abstract. We study perimeters of backbones of percolation clusters at the percolation 
threshold in two dimensions. These perimeters are self-avoiding for all lattices. We simulate 
these perimeters by three independent processes, measure the average size of them and 
study their variation with length. We find the exponent characterising this variation to be 
0.744 * 0.012. It seems likely that these perimeters are in the self-avoiding walk universality 
class. 

1. Introduction 

Recently there has been considerable interest in the study of different types of growing 
self-avoiding random walks (for a review see Peliti and Pietronero 1987). The primary 
motivation behind these studies is to explain polymer chain configurations at the 0 
point (Flory 1949). The statistics of long-chain polymer molecules in solution is 
governed by two competing intermolecular forces, a hard-core repulsion of the 
monomers of the chain at short distances, and a long-range attractive interaction. At 
high temperatures and in good solvents long-range attraction is weak, and the polymers 
have extended-coil configurations described by ordinary self-avoiding walks (SAW). 

On the other hand, at low temperatures and in poor solvents where attractive interaction 
is strong the polymer is found to be in a tightly coiled compact state described by a 
Hamiltonian walk (HW).  At the 6 temperature both contributions effectively cancel 
each other and chains behave essentially as ideal random walks characterised by an 
average size exponent vo different from both vSAW and vHw, the values at the high 
and low temperature limits respectively. By analogy with magnetic phase transitions 
de Gennes showed that the &point transition corresponds to a tricritical point (de 
Gennes 1975). Over the last few decades, the study of linear polymers at the f3 point 
has attracted a lot of attention in its own right. Howeve, until recently there were few 
definite results owing to the difficulty of simulating &point statistics by numerical 
methods. 

Kremer and Lyklema (1985a) introduced and studied the indefinitely growing 
self-avoiding walk (IGSAW) as a possible candidate for linear polymers at the 8 point. 
This is a two-dimensional walk in which the self-avoiding restriction is always 
maintained, but this walk is never trapped like ordinary SAW as it recognises and avoids 
cages likely to trap it-in this way it grows indefinitely. Specifically, this is done by 
assigning an angle, the winding angle with respect to the origin, to each site on the 
walk. The walker first identifies the unvisited sites among its nearest neighbours, then 
from these sites it selects those which will never lead to any trapping using the knowledge 
of winding angles. One of these accessible sites is then selected at random for the 
next step. Statistics of this walk have been investigated by exact enumeration and 
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high-precision Monte Carlo data (Kremer and Lyklema 1985a, b) who found a value 
of the average size exponent vlGSAW = 0.567 different from the values of other known 
walks. Weinrib and Trugman (1985) showed that this walk actually corresponds to 
the perimeter of percolation clusters at the percolation threshold. This correspondence 
is exact for site percolation on the triangular lattice, and its perimeter on the dual 
honeycomb lattice. For other lattices this correspondence is not exact, but the critical 
behaviour of these two objects is the same. This was shown by Ziff (1986), using a 
random walk algorithm to generate the perimeter of the site percolation clusters at the 
percolation threshold (Ziff et a1 1984). This correspondence was generalised to dressed 
self-avoiding walks by Gouyet et a1 (1987). Very recently Duplantier and Saleur (1988) 
showed that percolation perimeters, or IGSAW, actually do represent &point polymer 
statistics, an analogy proposed earlier by Coniglio et a1 (1987). 

Here in this paper we study the external perimeters of the backbones of the 
percolation clusters at the percolation threshold. We generate percolation clusters at 
the percolation threshold and then remove all dangling ends to get the backbone. In 
the case of bond percolation, we isolate the number of occupied bonds of the resulting 
structure which are exposed to the external region. These bonds constitute the external 
perimeter of the backbone. For site percolation we convert the cluster to a bond cluster 
by joining all pairs of neighbouring occupied sites and measure the external perimeter 
in the same way. These perimeters are self-avoiding and cannot self-intersect on any 
lattice. These backbone perimeters are more straightforward than those for percolation 
cluster perimeters, which are much more tortuous due to the presence of dangling 
ends. Therefore one might expect a higher value of the average size exponent for 
backbone perimeters compared to that of cluster perimeters of IGSAW, and indeed we 
have obtained a higher value. We have studied the backbone perimeters of percolation 
clusters at the percolation threshold by three independent methods and measured their 
average sizes as a function of length. Our estimate for the associated exponent is 
0.744* 0.012. 

In 0 2 we describe the study of backbones of actual percolation clusters for bond 
percolation on a square lattice at the percolation threshold. In § 3 we describe the 
study of backbone perimeters by generating perimeters for site percolation on a square 
lattice using a random walk algorithm. In § 4, we describe the same study this time 
generating backbone perimeters by IGSAW on a triangular lattice, while § 5 contains 
our conclusion. 

2. Simulation of the actual percolation clusters 

We have studied bond percolation on a square lattice at the percolation threshold p c  
(=f). For a square lattice of size L every bond is occupied with probability pc  and 
vacant with probability (1 - p J .  We considered those configurations for each of which 
an ‘infinite’ cluster exists, spanning the whole lattice from top to bottom. We separated 
the infinite cluster following the algorithm by Hoshen and Kopelman (1976) and 
removed all its dangling ends, obtaining the percolation backbone using the recently 
introduced algorithm of Roux and Hansen (1987). 

To get the backbone perimeter, we consider the clusters of the smallest squares on 
this lattice. Two squares separated by a vacant bond belong to the same cluster. A 
distinct cluster of such squares is surrounded by occupied bonds. We number these 
clusters of squares following the algorithm of Hoshen and Kopelman (1976). After 
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numbering we note the number of squares on the leftmost column of the lattice. Then, 
among all occupied bonds of the lattice, we choose those bonds which have exactly 
one square on one side having the same number as the left-side squares (see figure 1). 
These bonds constitute the left perimeter, and its length is measured. In the same way 
we count the number of bonds on the right perimeter. We assign the mean of these 
left- and right-perimeter lengths as the perimeter of the backbone of this configuration. 

Figure 1. Backbone of an infinite bond percolation cluster on the square lattice of size 
L = 10. Clusters of smallest squares are numbered. Occupied bonds with squares on one 
of its two sides of number 1 constitute the left perimeter, and its length is 22. Similarly 
the right perimeter is of length 17. 
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Figure 2. Points denoted by (0) represent log L against log(P,) of B 2. Points denoted by 
(0)  represent by log (RN) against log N of 5 3. Points denoted by (A) represent log(RN) 
against log N of $ 4 .  Least-square fits of different symbols give estimates of slopes 0.753, 
0.737 and 0.745 respectively. 
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We considered lattices of 18 different sizes, with L =  10, 12, 16, 20, 24, 32,. . . , 360, 
384, 512. For L =  10, 12,16 we averaged over 32 000 percolating configurations. The 
number of configurations studied for a particular lattice size L was reduced by a factor 
of two when the lattice size was doubled. Finally, for L = 360,384 and 512 we simulated 
1000 percolating configurations each. We averaged the perimeter lengths for each 
lattice size L, and tried to fit this average length (PL) for various lattice sizes L to the 
form L-(P , )” .  To get the value of v we plotted L against ( P L )  on a log-log scale (see 
figure 2). The points fit very well to a straight line. A least-squares fit to these data 
gives the value of the size exponent v = 0.753. Similar measurements for site percolation 
on the square lattice at the percolation threshold (using p c  = 0.592 745, Ziff and Sapoval 
(1986)) gives for the size exponent v = 0.741. 

3. Simulation of percolation cluster perimeters 

Here we generate the site percolation cluster perimeters on the square lattice at the 
percolation threshold by a random walk algorithm introduced by Ziff et a1 (1984). 
This method generates only the cluster perimeters without generating the actual percola- 
tion clusters. Let us briefly describe the method. 

The sites of the lattice are divided into three categories, namely blank, vacant and 
occupied. The process starts with a lattice full of blank sites except for a vacant-site- 
occupied-site pair at the centre. The clusters are grown by the following algorithm. 

(i) A direction is defined by drawing an arrow from the vacant site to the occupied 
site and the random walker goes to the occupied site. 

(ii) With the walker oriented by the arrow, the site to the left of the present site 
is tested for type, as follows. 

(a) If the site is already occupied then an arrow is drawn from the present position 
to the new occupied site, the random walker goes to this occupied site and process 
(ii) is repeated. 

(b) If the site is vacant then testing is repeated, but with the site colinear with the 
arrow chosen; if this is also vacant, the site to the right is tested; if this is also vacant 
the backward site is tested. 

(c) If the site is blank, then this site is occupied with probability p and vacant 
with probability (1 - p ) .  This process stops when the initial site is traversed again in 
the initial direction. 

We generate long percolation cluster perimeters of occupied sites on the square 
lattice at its percolation threshold p c  by this method. Then we determine the backbone 
of this cluster between initial occupied sites and the final occupied sites. This is done 
by numbering the occupied sites during the process of generation of the perimeter. In 
this process the random walker assigns a number to each occupied site. Whenever a 
new occupied site is faced, the walker assigns a new number to this site, one greater 
than the number of the presently occupied site. When an occupied site is revisited the 
number of that site is unchanged. However, corresponding to every site number we 
keep in memory the position of the latest occupied site visited having this number. 
Finally, when the process is terminated the sites in memory represent the backbone 
of the perimeter. In our case this backbone is also its perimeter (see figure 3). 

We restrict the length of the backbone perimeter to N, and calculate the end-to-end 
distance. We simulated backbone perimeters of 21 different lengths, namely N = 10, 
12, 16, 20, 24, 32,. . . ,640, 768, 1024. For N = 10, 12 and 16 we averaged over 3.2 
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Figure 3. Generation of the percolation backbone perimeter of length 49 bond units. 
Numbered circles represent occupied sites, empty circles represent vacant sites and blank 
sites are not shown. All connected circles constitute the perimeter of the percolation cluster. 
Thin and thick line connections correspond to the backbone and to dangling ends respec- 
tively. 

million configurations. The number of configurations studied for a particular perimeter 
length N is reduced by a factor of two when the perimeter length is doubled. Finally, 
for N = 640,768 and 1024 we simulated 50 000 configurations each. We averaged these 
end-to-end distances for each perimeter length N and tried to fit this average length 
( R N )  for various perimeter lengths N to the form ( R N ) - N Y .  In figure 2 ( R N )  is 
plotted against N on a log-log scale. A least-squares fit of these data gives the value 
of the size exponent v = 0.737. 

4. Simulation of the indefinitely growing self-avoiding walks 

We generated perimeters of backbones of percolation clusters by indefinitely growing 
self-avoiding walks. To explain this, let us consider the correspondence between IGSAW 
and percolation cluster perimeters in some detail, following Weinrib and Trugman 
(1985). 

Consider site percolation clusters on a triangular lattice at the percolation threshold 
p c  = $. The perimeter of such a cluster is defined by those bonds on the dual honeycomb 
lattice which separate occupied sites from unoccupied sites on the triangular lattice. 
The probability that a bond on the dual honeycomb lattice will be occupied by the 
perimeter will depend on the probability that a site on any of its two sides is occupied. 
It has been shown (Weinrib and Trugman 1985) that the probability distribution for 
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the bonds on the perimeter will follow exactly the same probability distribution IGSAW 

steps on the honeycomb lattice. Now two sites (separated by more than three bonds) 
on such a perimeter will be at nearest ( N N ) ,  next nearest ( N N N )  or next-to-next nearest 
( N N N N )  neighbour distance only when the portion of the perimeter between this pair 
of sites surrounds some dangling ends of the percolation cluster. Therefore to get the 
perimeter of the backbone of the percolation cluster we have to remove that portion 
of the percolation cluster perimeter between two sites placed at NN,  N N N  and N N N N  

positions. In figure 4 these site pairs are marked by 11,22 and 33. The sites 44 are 
also nearest neighbours but the portion of the perimeter between these two sites 
surrounds a dangling end of thee unoccupied site cluster, and we do not try to remove 
it. The resulting structure therefore gives the perimeter of the backbone. 

Figure 4. Percolation cluster (full circles) on the triangular lattice and its perimeter (thick 
curve) on the honeycomb lattice. Portions of this perimeter between pairs of points 11,22 
and 33 surround dangling ends of the cluster whereas 44 corresponds to a dangling end 
of an unoccupied site cluster. The backbone perimeter obtained from the cluster perimeter 
is shown by the thin line. 

From the point of view of IGSAW, when the walker comes to NN, N N N  and N N N N  

sites of its previous path it faces a possibility of future trapping. The dangling ends 
of the percolation clusters correspond to trapping situations on the IGSAW. Therefore, 
as an equivalent procedure, instead of generating the perimeter of percolation clusters 
we can use IGSAW on a honeycomb lattice to get the percolation backbone perimeter 
on the triangular lattice. To do this, a long IGSAW is generated and all WN, N N N  and 
N N N N  site pairs are determined. Then those pairs of sites which differ in winding 
angle by the same sign (to avoid the situation marked 44 in figure 4) are short circuited. 
For two different signs, + and -, we get two perimeters, left and right. Though the 
correspondence between IGSAW and percolation perimeters is not exact on lattices 
other than the honeycomb lattice, we believe from universality considerations that 
such a construction of backbone perimeters from IGSAW on other lattices would yield 
similar results. With this belief, we have simulated IGSAW on the triangular lattice to 
use the knowledge that, on this lattice, to check for possible caging it is enough to 
look at nearest neighbours only (Kremer and Lyklema 1985b) (see figure 5). 

We have generated 1000 configurations of such IGSAW. Each of these configurations 
has a left or right perimeter greater than 2048 steps. Then average distances ( R N )  on 
these perimeters are calculated for points separated by N = 16, 32, . . . ,512 steps and 
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Figure 5. Indefinitely growing self-avoiding walk of length 64 steps on the triangular lattice 
(shown by thick line). The left and right backbone perimeters constructed from this walk 
are of length 22 and 25 respectively. 

they are further averaged over 1000 configurations, and over both sides. Similar 
calculations are done for 12,24,. . . ,384 steps and 10,20,. . . ,320 steps. We plot ( R N )  
and N on a log-log scale (see figure 2). A least-squares fit of these data gives the 
value of the size exponent v = 0.745. 

5. Conclusion 

In this paper we have studied perimeters of the backbones of the percolation clusters 
at the percolation threshold in two dimensions by three independent methods. First, 
we generated actual bond and site percolation clusters at the percolation threshold on 
the square lattice and measured the average length of the perimeters of the backbones 
as a function of lattice size (§  2 ) .  Second, percolation cluster perimeters were generated 
by a random walk algorithm for site percolation on the square lattice at the percolation 
threshold and the average end-to-end distance of the perimeter of the backbone was 
measured as a function of perimeter length (§  3). Third, indefinitely growing self- 
avoiding walks were generated on the triangular lattice. As these walks represent 
perimeters of percolation clusters at the percolation threshold we used them to generate 
equivalent percolation backbone perimeters by chopping off portions of the walk 
corresponding to dangling ends. We measured the average end-to-end distance as a 
function of this perimeter length. In each case we calculated the exponent related to 
the average size and length of these perimeters. All these three independent methods 
give very close estimates of the exponent, and we finally estimate a value of Y =  

0.744*0.012. This value is very close to the average size exponent for ordinary 
self-avoiding walks in two dimensions, which is exactly equal to $ (Nienhuis 1982). 
Therefore it seems likely that perimeters of percolation backbones may belong to the 
same universality class as that of ordinary SAW. This result is not very surprising since 
considering the backbone instead of the whole cluster amounts to adding repulsive 
interactions to a 0 point, which results in self-avoiding walk behaviour. 
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Note added. After submission of the  paper we came to know about the works of Grossman and Aharony 
(1986,1987). Here the external perimeter of a percolation cluster is measured by throwing particles to the 
percolation cluster and estimating the length accessible to them. The fractal dimension of this perimeter 
was estimated to be nearly j. We find this work and our work are complementary in the following sense 
and expect the results should be the same. Consider two pictures: the first is an infinite cluster of occupied 
sites in a sea of vacant sites and the second is just the ‘negative’ of the first. By negative we mean all the 
occupied sites have become vacant and the vacant sites are made occupied. Then the external accessible 
perimeter and the perimeter of the backbone of the first picture will be the internal perimeter of the backbone 
and the internal accessible perimeter of the occupied cluster on the second picture respectively. At the 
percolation threshold they should be the same. 
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